Xinxing jihua International Trading CO.,LTD.
产品中心
PRODUCT CENTER
>
>
4arm PEG Amine (pentaerythritol), HCl Salt
全部产品分类

留言反馈

如果您对产品有任何疑问,或者对我们有任何意见建议,欢迎在此留言,我们将关注您的问题并尽快与您联系。

1 / 1
浏览量:
91

4arm PEG Amine (pentaerythritol), HCl Salt

零售价
0.0
市场价
0.0
浏览量:
91
产品编号
A7026
数量
-
+
库存:
0
产品代号
4ARM-PEG-NH2HCl
产品纯度
≥ 95%
包装规格
1g, 10g, 100g等(特殊包装需收取分装费用)
分子量
2000 Da, 5000 Da, 10000Da, 20000 Da,40000 Da等
如需其他分子量,请联系 sales@jenkem.com 或 010-82156767
1
产品描述
参考文献

  键凯科技提供高品质4ARM-NH2HCl-20K产品,产品取代率≥ 95%。

  键凯科技的4臂胺可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。

  键凯科技提供4ARM-NH2HCl分子量2000 Da, 5000 Da, 10000Da, 20000 Da,40000 Da的产品 1克和10克包装。

  键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

  键凯科技同时提供其他分子量的4ARM-NH2HCl产品,如你需要请与我司sales@jenkem.com联系。

  键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

 

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

  References:

  1. Zhan, H., et al., A Hybrid Peptide Amphiphile Fiber PEG Hydrogel Matrix for 3D Cell Culture, Advanced Functional Materials, 2019.

  2. Bizeau, J., et al., Synthesis and characterization of hyaluronic acid coated manganese dioxide microparticles that act as ROS scavengers, Colloids and Surfaces B: Biointerfaces, 2017, 159, P. 30-38.

  3. Sharma, S., et al., A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments, Biomaterials, 2017, 143, P. 17-28.

  4. Tardy, B.L., et al., Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017.

  5. Hu, J., et al., A thermo-degradable hydrogel with light-tunable degradation and drug release, Biomaterials, 2017, 112, p. 133-140.

  6. Aliperta, R., et al., Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy, Scientific Reports, 2017, 7.

  7. Li Y, et al., Water-dispersible graphene/amphiphilic pyrene derivative nanocomposite: High AuNPs loading capacity for CEA electrochemical immunosensing, Sensors and Actuators B: Chemical, 2017.

  8. Racine, L., et al., Design of interpenetrating chitosan and poly (ethylene glycol) sponges for potential drug delivery applications, Carbohydrate Polymers, 2017, 170:166-75.

  9. Rehmann, M., et al., Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation, J. Biomed. Mater. Res. A, 2016.

  10. Borg, D.J., et al., Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells, Acta Biomaterialia, 2016.

  11. Zoetebier, B., Functional macromolecules and smart polymer networks for ion separation, reduction and delivery, Diss., 2016.

  12. Henise, J.. et al., Biodegradable Tetra-PEG Hydrogels as Carriers for a Releasable Drug Delivery System, Bioconjugate Chem., 2015, 26 (2), pp 270–278.

  13. Jonker, A. M., et al., A Fast and Activatable Cross-Linking Strategy for Hydrogel Formation, Advanced Materials, 2015, 27(7): 1235-1240.

  14. Zhang, N., et al., Magnetic Nanocomposite Hydrogel for Potential Cartilage Tissue Engineering: Synthesis, Characterization, and Cytocompatibility with Bone Marrow Derived Mesenchymal Stem Cells, ACS Applied Materials & Interfaces, 2015, 7 (37), 20987-20998.

  15. Truong, V.X., et al., Photodegradable Gelatin-Based Hydrogels Prepared by Bioorthogonal Click Chemistry for Cell Encapsulation and Release, Biomacromolecules, 2015, 16 (7), 2246-2253.

  16. Learsch, R., Engineering mechanical dissipation in solid poly(ethylene glycol) hydrogels with bio-inspired metal-coordinate crosslinks, 2015, MIT.

  17. Cheng, X.Q., et al., Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics, Journal of Membrane Science, 2015, V. 493, P. 156-166.

  18. Truong, V. X., et al., Nitrile Oxide-Norbornene Cycloaddition as a Bioorthogonal Crosslinking Reaction for the Preparation of Hydrogels, Macromol. Rapid Commun., 2015, 36: 1729–1734.

  19. Houbenov, N., et al., Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale, Nature Communications, 2014, 5:4043.

  20. Myers, B.K., et al., The characterization of dendronized poly(ethylene glycol)s and poly(ethylene glycol) multi-arm stars using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Analytica Chimica Acta, 2014, 808(0): p. 175-189.

  21. Hao, Y., et al., Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 2014, 10(1): p. 104-114.

  22. Xu, J., E. Feng, and J. Song, Bioorthogonally Cross-Linked Hydrogel Network with Precisely Controlled Disintegration Time over a Broad Range. Journal of the American Chemical Society, 2014, 136(11): p. 4105-4108.

  23. McKinnon, D.D., et al., Bis-Aliphatic Hydrazone-Linked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic Studies. Chemistry of Materials, 2014, 26(7): p. 2382-2387.

  24. Ki, C.S., et al., Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance, Biomaterials, 2014, 35(36), p: 9668-9677.

  25. McKinnon, D.D., et al., Design and Characterization of a Synthetically Accessible, Photodegradable Hydrogel for User-Directed Formation of Neural Networks, Biomacromolecules, 2014, 15, 2808−2816.

  26. Jonker, A.M., et al., A Fast and Activatable Cross-Linking Strategy for Hydrogel Formation, Advanced Materials, 2014, 27(7), 1235-1240.

  27. Shih, H., et al.,Visible-Light-Mediated Thiol-Ene Hydrogelation Using Eosin-Y as the Only Photoinitiator, Macromolecular Rapid Communications, 2013, 34(3): 269-273.

  28. Ashley, G.W., et al., Hydrogel drug delivery system with predictable and tunable drug release and degradation rates, PNAS, 2013, 110(6) 2318-2323.

  29. Maitz, M.F., et al., Bio-responsive polymer hydrogels homeostatically regulate blood coagulation, Nature Commun, 2013, 4.

  30. Kretlow, James D., Biomaterial-based strategies for craniofacial tissue engineering, Doctoral Thesis, Rice University, 2010.

  31. Murphy, J.L., et al., Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds, Biomacromolecules, 2010, 11(11), pp 2976–2984.

  32、Ding, Y. et al, Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells, Acta Biomaterialia, 2020, V. 105, P. 68-77.

  33、Newland, B., et al., Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers, MethodsX, 2020, V.7.

       34、Baker, A., et al., Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute, Biomaterials, 2021, V. 271.

  34、Newland, B., et al., Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis, Carbohydrate Polymers, 2020, 245, 116504.

  35、Lee, Y.Y., et al, Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm, Biomaterials, 2021, 267, 120389.

产品咨询

留言应用名称:
产品咨询
描述:
TOP
搜索
确认
取消
JenKem

键凯科技的产品为您提高和改善药性,

为客户提供从候选药物筛选到申报临床研究的全过程服务!

联系我们

+86-010-82156767

+86-010-62983737

sales@jenkem.com

北京市海淀区西小口路66号中关村东升科技园C-1楼三层

WEBSITE

微信公众号

Copyright © 2001-2021  北京键凯科技股份有限公司  京ICP备05043698号-1

留言反馈

留言应用名称:
客户留言
描述:

语言选择