产品中心

联系我们

+86-010-82156767

销售专用:

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层

undefined
+
  • undefined

PEG (Acrylate)2

产品代号:

ACLT-PEG-ACLT

产品纯度:

≥ 95%

包装规格:

1g, 10g, 100g等(特殊包装需收取分装费用)

分子量:

2000 Da,3500 Da, 5000 Da, 7500 Da等

产品咨询:

科研客户小批量一键采购地址(小于5克)

  • 产品描述
  • 参考文献
  •   键凯科技提供高品质双端丙烯酸酯聚乙二醇产品,产品取代率≥95%。

      键凯科技生产的双丙烯酸酯是一种用于含硫基/硫醇分子的PEG修饰的同双功能PEG。丙烯酸酯通常用于乙烯基聚合或共聚合。键凯科技的同双功能PEG衍生物可作为交联剂广泛应用于蛋白质和肽的PEG修饰、纳米颗粒及表面改性中。与使用线性PEG修饰的微粒相比,与同双功能PEG缀合的颗粒可保证更高的载药量。

      键凯科技提供ACLT-PEG-ACLT分子量2000 Da,3500 Da, 5000 Da, 7500 Da的产品1克和10克包装。

      键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

      键凯科技同时提供其他分子量的ACLT-PEG-ACLT衍生物产品,如你需要请与我司sales@jenkem.com联系。

      键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

     

  •   References:

      1. Gottipati, A., et al., Gelatin Based Polymer Cell Coating Improves Bone Marrow-Derived Cell Retention in the Heart after Myocardial Infarction, Stem Cell Reviews and Reports, 2019.

      2. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, V. 67, P. 42-52.

      3. Tan, J.J., et al.,. Impact of substrate stiffness on dermal papilla aggregates in microgels, Biomaterials science, 2018.

      4. Jiang, Z., et al., A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. Journal of Materials Chemistry B, 2017, 5(1):173-80.

      5. Pedron, S., et al., Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness. Biomacromolecules, 2017, 18(4):1393-400.

      6. Acun, A., et al., Engineered Myocardium Model to Study the Roles of HIF-1α and HIF1A-AS1 in Paracrine-only Signaling under Pathological Level Oxidative Stress, Acta Biomaterialia, 2017.

      7. DiVito, K.A., et al., Data characterizing microfabricated human blood vessels created via hydrodynamic focusing, Data in Brief, 2017, 14, P. 156-162.

      8. Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, 104:1, p. 113–123.

      9. Feng, Q., et al., Mechanically Resilient, Injectable, and Bioadhesive Supramolecular Gelatin Hydrogels Crosslinked by Weak Host-Guest Interactions Assist Cell Infiltration and In Situ Tissue Regeneration, Biomaterials, 2016.

      10. Lilly, J.L., et al., Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection, Biomacromolecules, 2015, 16 (2), 541-549

      11. Hao, Y., et al., Visible Light Cured Thiol-Vinyl Hydrogels with Tunable Gelation and Degradation, Purdue University Library, 2014.

      12. Jing, P., In Vitro Hair Follicle Engineering, National University of Singapore, 2014.

      13. Pan, J., Fabrication of a 3D hair follicle-like hydrogel by soft lithography, J Biomed Mater Res Part A, 2013, 101(11):3159-69.

      14. Pedron, S., et al., Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy, J. Biomed. Mater. Res., 2013, 101 (12), p. 3404–3415.

           15. Basara, G., et al., Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering, Acta Biomaterialia, 2020.

产品询价