产品中心

联系我们

+86-010-82156767

销售专用:

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层

undefined
+
  • undefined

t-Boc Amine PEG Amine, HCl Salt

产品代号:

TBOC-PEG-NH2HCl

产品纯度:

≥ 95%

包装规格:

1g, 10g, 100g等(特殊包装需收取分装费用)

分子量:

2000 Da,3500 Da, 5000 Da, 7500 Da等

产品咨询:

科研客户小批量一键采购地址(小于5克)

  • 产品描述
  • 参考文献
  •   键凯科技生产叔丁氧羰氨基聚乙二醇胺盐酸盐产品中含有由tBoc基团保护的胺及胺的盐酸盐,通常用作两种不同化学物质的交联剂或间隔物。此异功能PEG衍生物中的PEG部分可提供水溶性、生物相容性及柔性。此产品专门应用于抗体偶联药物(ADC’s)的开发。

      键凯科技提供TBOC-PEG-NH2HCl分子量2000 Da,3500 Da, 5000 Da, 7500 Da的产品1克和10克包装。

      键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

      键凯科技同时提供其他分子量的TBOC-PEG-NH2HCl衍生物产品,如你需要请与我司sales@jenkem.com联系。

      键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

     

  •   References:

      1. Ai, F., et al., An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy, Nanoscale, 2018, 10(9), pp.4432-4441.

      2. Huo, M., et al., Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment, Journal of Controlled Release, 2017, V. 245, P. 81-94.

      3. Gajbhiye, K.R., et al., Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: An in vitro-in vivo study, Scientific Reports, 2017, 7: 11086.

      4. Li, Y., et al., A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy, RSC Adv., 2016, 6, 6516-6522.

      5. Zhang, X., et al., Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells. Inorganic chemistry, 2016, 55(8):3872-80.

      6. Zhao, Y., et al., Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma, Biomaterials, 2015, V. 68, P. 54-66.

      7. Li, H., et al., Dual MMP7-Proximity-Activated and Folate Receptor-Targeted Nanoparticles for siRNA Delivery, Biomacromolecules, 2015, 16 (1), p: 192–201.

      8. Liu, J., et al., Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo, Nanoscale, 2015, 7, 4451-4460.

      9. Baker, D.W., et al., Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomaterialia, 2014, 10(7): p. 2945-2955.

      10. Hsu, H.-J., et al., Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles, Macromolecules, 2014, 47 (19), pp 6911–6918.

      11. Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer, Adv. Funct. Mater., 2014, 24: 6601–6611.

      12. Guo, S., et al., Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS nano, 2014, 8(5):4996-5009.

      13. Zhou, J., et al., In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe, Bioorganic & Medicinal Chemistry Letters, 2013, 23(7), p: 2044-2047.

      14. Baker, D.W., The Pivotal Role Of Fibrocytes On Foreign Body Reactions, UTA, 2013.

      15. Li, D., et al., A novel chlorin–PEG–folate conjugate with higher water solubility, lower cytotoxicity, better tumor targeting and photodynamic activity, Journal of Photochemistry and Photobiology B: Biology, 2013, 127, 5, p. 28-37.

      16. Cao, P., et al., Improving Lanthanide Nanocrystal Colloidal Stability in Competitive Aqueous Buffer Solutions using Multivalent PEG-Phosphonate Ligands, Langmuir, 2012, 28(35), pp 12861–12870.

           17. Han, Y., et al., Effective oral delivery of Exenatide-Zn2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy, Biomaterials, 2021, V. 275.

产品询价