欢迎来到北京键凯科技股份有限公司官方网站!

>
>
PEG (Amine)2, HCl Salt
浏览量:
产品名称:

PEG (Amine)2, HCl Salt

产品代号:
HClNH2-PEG5000-NH2HCl
产品纯度:
≥ 95%
分子量:
2000 Da,3500 Da, 5000 Da, 7500 Da等
产品编号:
A4017
没有此类产品
产品描述

  键凯科技提供高品质双胺PEG产品,产品取代率≥95%。

  键凯科技生产的双胺PEG是一种通过酰胺、氨基甲酸酯、脲或仲胺等稳定的连接形式进行PEG修饰的同双功能PEG。盐酸盐形式使双胺PEG可以以稳定的固体状态存在。键凯科技的同双功能PEG衍生物可作为交联剂广泛应用于蛋白质和肽的PEG修饰、纳米颗粒及表面改性中。与使用线性PEG修饰的微粒相比,与同双功能PEG缀合的颗粒可保证更高的载药量。

  键凯科技提供HClNH2-PEG-NH2HCl分子量2000 Da,3500 Da, 5000 Da, 7500 Da的产品1克和5克包装。

  键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

  键凯科技同时提供其他分子量的HClNH2-PEG-NH2HCl衍生物产品,如你需要请与我司sales@jenkem.com联系。

  键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

References:

  1. Zhang, T., et al., Magnetic/pH dual-responsive nanocomposites loading doxorubicin hydrochloride for cancer therapy, Micro & Nano Letters, 2019.
  2. Goh, S.C., et al., Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates: variations, Journal of Materials Chemistry B, 2018.
  3. Kushwah, V., at al., Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes, Colloids and Surfaces B: Biointerfaces, 2018, V. 172, P. 213-223.
  4. Meng, Y., et al., Aminopeptidase N (CD13) targeted MR and NIRF dual-modal imaging of ovarian tumor xenograft, Materials Science and Engineering: C, 2018, V. 93, P. 968-974.
  5. Goor, O., et al., Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives, Polymer Chemistry, 2017.
  6. Goh, S.C.M, Universal Aqueous-Based Antifouling Coatings For Multi-Material Devices, McMaster University, 2017.
  7. Chen, X., et al., PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment, Journal of Colloid and Interface Science, 2017, V. 490, P. 542-552.
  8. Mou, J., et al., A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy, Theranostics, 2017, 7(6):1531-1542.
  9. Kim, H.C., et al., Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery, Polymer, 2017.
  10. Bai, J., et al., Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours In Vivo, Theranostics, 2016, 6(3):342-356.
  11. Jain, S., et al., Estradiol functionalized multi-walled carbon nanotubes as renovated strategy for efficient gene delivery, RSC Advances, 2016, 6(13):10792-801
  12. Mehdizadeh, M., et al., Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy. Artificial cells, nanomedicine, and biotechnology, 2016, 1-0.
  13. Bai, J., et al., Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy, Journal of Controlled Release, 2016.
  14. Kippstein, R., et al., Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo, Small, 2015, 11: 4704–4722.
  15. Jain, S., et al., Enhanced Antitumor Efficacy and Reduced Toxicity of Docetaxel Loaded Estradiol Functionalized Stealth Polymeric Nanoparticles, Mol. Pharmaceutics, 2015, 12 (11), pp 3871–3884.
  16. Chen, N., et al., Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas, Journal of Colloid and Interface Science, 2015, 457, P. 27-34.
  17. Liu, S., et al., Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization, Adv. Mater., 2015.
  18. Zhang, T., et al., Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer, Nanomedicine, 2015, 10:4 , P. 573-587.
  19. Cheng, L., et al., Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties, Colloids and Surfaces B: Biointerfaces, 2015, 136, P. 37-45.
  20. Li, S., et al., Targeted imaging of brain gliomas using multifunctional Fe3O4/MnO nanoparticles, RSC Adv., 2015, 5, 33639-33645.
  21. Chen, W., et al., Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery, RSC Adv., 2015, 5, 69307-69311.
  22. Rubio, N., et al., Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide, ACS Applied Materials & Interfaces, 2015, 7 (34), 18920-18923.
  23. Chen, H., et al., A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery, Nanoscale, 2015, 7, 15477-15486.
  24. El-Gogary, R.I., et al., Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells in Vitro and in Vivo. ACS Nano, 2014, 8(2): p. 1384-1401.
  25. Amoozgar, Z., et al., Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model, Biomacromolecules, 2014, 15(11):4187-94.
  26. Feng, T., et al., PEGylated poly(aspartate-g-OEI) copolymers for effective and prolonged gene transfection, J. Mater. Chem. B, 2014, 2, 2725-2732.
  27. Browning, M.B., et al., Endothelial Cell Response to Chemical, Biological, and Physical Cues in Bioactive Hydrogels, Tissue Engineering Part A, 2014, 20(23-24): 3130-3141.
  28. Zhang, M., Graphene Oxide Based Theranostic Platform for T1-Weighted Magnetic Resonance Imaging and Drug Delivery, ACS Appl. Mater. Interfaces, 2013, 5(24), pp 13325–13332.
  29. Das, M., et al., Intranuclear Drug Delivery and Effective in Vivo Cancer Therapy via Estradiol–PEG-Appended Multiwalled Carbon Nanotubes, Mol. Pharmaceutics, 2013, 10 (9), pp 3404–3416.
  30. Zhou, J., et al., In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe. Bioorganic & Medicinal Chemistry Letters, 2013, 23(7): p. 2044-2047.
  31. Browning, M.B., Bioactive Hydrogels with Enhanced Initial and Sustained Cell Interactions, Biomacromolecules, 2013, 14(7) p: 2225–2233.
  32. Bagaria, H.G., et al., Adsorption of iron oxide nanoclusters stabilized with sulfonated copolymers on silica in concentrated NaCl and CaCl 2 brine, Journal of colloid and interface science, 2013, 398: 217-226.
  33. Zhang, T., et al., In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds, SPIE NanoScience+ Engineering,  International Society for Optics and Photonics, 2013, pp. 881504-881504.
未找到相应参数组,请于后台属性模板中添加
暂未实现,敬请期待
暂未实现,敬请期待
上一篇
下一篇