产品中心

联系我们

+86-010-82156767

销售专用:

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层

undefined
+
  • undefined

4arm PEG Succinimidyl Glutarate (pentaerythritol)

产品代号:

4ARM-SG-20K

产品纯度:

≥ 95%

包装规格:

1g, 10g, 100g等(特殊包装需收取分装费用)

分子量:

10000Da, 20000 Da,40000 Da等

产品咨询:

科研客户小批量一键采购地址(小于5克)

  • 产品描述
  • 参考文献
  •   键凯科技提供高品质4ARM-SG-20K四臂聚乙二醇琥珀酰亚胺戊二酸酯产品,产品取代率≥ 95%。

      键凯科技的4臂琥珀酰亚胺戊二酸脂可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。

      键凯科技提供4ARM-SG分子量10000Da, 20000 Da,40000 Da产品 1克和10克包装。

      键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

      键凯科技同时提供其他分子量的4ARM-SG产品,如你需要请与我司sales@jenkem.com联系。

      键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

     

  • References:

    1. Delgado, L., et al., Collagen cross-linking–Biophysical, biochemical and biological response analysis. Tissue Engineering. 2017.
    2. Lotz, C., et al., A Crosslinked Collagen Hydrogel Matrix Resisting Contraction to Facilitate Full-thickness Skin Equivalents, ACS Applied Materials & Interfaces, 2017.
    3. Inostroza-Brito, K.E., et al., Cross-linking of a Biopolymer-Peptide Co-Assembling System, Acta Biomaterialia, 2017.
    4. Corrales, R., et al., Mechanical modulation of a human plasma based skin scaffold via reactive multi-arm polyethylene glycols, Biomecanica, 2016, 24, pp 14-23.
    5. Kontturi, L.S., et al., Encapsulated cells for long-term secretion of soluble VEGF receptor 1: Material optimization and simulation of ocular drug response, European Journal of Pharmaceutics and Biopharmaceutics, 2015, V. 95, B, Pages 387-397.
    6. Sanami, M., et al., The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers, J. Biomed. Mater. Res., 2015.
    7. Fontana, G., et al., Three-Dimensional Microgel Platform for the Production of Cell Factories Tailored for the Nucleus Pulposus, Bioconjugate Chem., 2015, 26 (7), pp 1297–1306.
    8. Sanami, M., et al., Biophysical and biological characterisation of collagen/resilin-like protein composite fibres, Biomedical Materials, 2015, 10:6.
    9. Kontturi, L.S., et al., An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering, Drug delivery and translational research, 2014, 4(2):149-58.
    10. Thomas, D., et al., A shape-controlled tuneable microgel platform to modulate angiogenic paracrine
      responses in stem cells, Biomaterials, 2014, 35(31):8757-8766.
    11. Grover, G.N., et al., Myocardial Matrix-Polyethylene Glycol Hybrid Hydrogels for Tissue Engineering, Nanotechnology, 2014, 25(1):014011.
    12. Michael Monaghan, et al., A Collagen-based Scaffold Delivering Exogenous MicroRNA-29B to Modulate Extracellular Matrix Remodeling, Molecular Therapy, 2014, 22 (4), p: 786–796.
    13. Fontana, G., et al., Microgel Microenvironment Primes Adipose-Derived Stem Cells Towards an NP Cells-Like Phenotype. Advanced Healthcare Materials, 2014, 3: 2012–2022.
    14. Brunette, M., et al., Inducible Nitric Oxide Releasing Poly-(Ethylene Glycol)-Fibrinogen Adhesive Hydrogels for Tissue Regeneration, MRS Spring Meeting, 2013.
    15. Sargeant, T.D., et al., An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomaterialia, 2012. 8(1): p. 124-132.
    16. Rane, A.A., Understanding mechanisms by which injectable biomaterials affect cardiac function postmyocardial infarction, UC San Diego, 2012.
    17. Collin, E.C., et al., An injectable vehicle for nucleus pulposus cell-based therapy, Biomaterials, 2011, 32(11), p: 2862-2870.
    18. Collin, E., et al., Injectable Type II Collagen-Hyluronan Hydrogel As Reservoir System For Nucleus Pulposus Regeneration, European Cells and Materials, 2010, 20(2).
    19. Yu, B., et al., A designed supramolecular cross-linking hydrogel for the direct, convenient, and efficient administration of hydrophobic drugs, International Journal of Pharmaceutics, 2020, V. 578.
    20. Wu Z., et al., In the quest of the optimal chondrichthyan for the development of collagen sponges for articular cartilage, Journal of Science: Advanced Materials and Devices, 2021.

    21. Wu, Z., et al., In the quest of the optimal tissue source (porcine male and female articular, tracheal and auricular cartilage) for the development of collagen sponges for articular cartilage, Biomedical Engineering Advances, 2021, V. 1.

    22. Na, K.-S., et al., Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model, Cytotherapy, 2021, V. 23 (6), P. 500-509.

    23. Wu, Z., et al., The Influence of Bloom Index, Endotoxin Levels and Polyethylene Glycol Succinimidyl Glutarate Crosslinking on the Physicochemical and Biological Properties of Gelatin Biomaterials. Biomolecules. 2021, 11(7):1003.

    24. Giliomee, J, et al., Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing. Polymers. 2021, 13(11):1828.

    25. Pereira, D.R., et al., Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface, Biomaterials Advances, 2022, 133.

    26. Giliomee, J., et al., Investigation of the 3D Printability of Covalently Cross-Linked Polypeptide-Based Hydrogels. ACS omega. 2022;7(9).

    27. Pugliese, E., et al., Development of three-layer collagen scaffolds to spatially direct tissue-specific cell differentiation for enthesis repair, Materials Today Bio, 19, 2023.

产品询价