产品中心

联系我们

+86-010-82156767

销售专用:

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

地址:北京市海淀区西小口路66号中关村东升科技园C-1楼三层

undefined
+
  • undefined

4arm PEG Vinylsulfone

产品代号:

4ARM-PEG-VS

产品纯度:

≥ 90%

包装规格:

1g, 10g, 100g等(特殊包装需收取分装费用)

分子量:

10000Da, 20000 Da等

产品咨询:

科研客户小批量一键采购地址(小于5克)

  • 产品描述
  • 参考文献
  •   键凯科技提供高品质4ARM-VS-20K四臂聚乙二醇乙烯砜产品,产品取代率> 90%

      键凯科技的4臂乙烯砜可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。

      键凯科技提供4ARM-VS分子量10000Da, 20000 Da产品 1克和10克包装。

      键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

      键凯科技同时提供其他分子量的4ARM-VS产品,如你需要请与我司sales@jenkem.com联系。

      键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

     

  •   References:

      1. Van den Broeck, L., et al., Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering, Materials Science and Engineering: C, 2019.

      2. Kotturi, D., et al., Evaluating hydrogels for implantable probes using SERS, InPlasmonics in Biology and Medicine XVI, 2019.

      3. Beamish, J.A., et al., Deciphering the relative roles of matrix metalloproteinase‐and plasmin‐mediated matrix degradation during capillary morphogenesis using engineered hydrogels, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019.

      4. Day, J.R., et al., The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host, Acta Biomaterialia, 2018, 67, P. 42-52.

      5. Day, J.R., et al., Immunoisolating poly(ethylene glycol) based capsules support ovarian tissue survival to restore endocrine function, Journal of Biomedical Materials Research Part A., 2018.

      6. Schweikle, M., et al.,. Injectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling system, Materials Science and Engineering: C, 2018, 90, pp.67-76.

      7. Kudva, A.K., et al., RGD‐functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum‐derived cells, Journal of Biomedical Materials Research Part A, 2018, 106(1), p.33-42.

      8. Li, M., et al., Oligo (p-phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell-Specific Imaging and Activatable Photodynamic Therapy, ACS Biomaterials Science & Engineering, 2017.

      9. Kozai, T.D.Y., et al., Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights, Journal of Neuroscience Methods, 2016, 258, P. 46-55.

      10. Kim, J., et al., Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition, Soft Matter, 2016.

      11. Darling, N.J., et al., Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly (ethylene glycol) hydrogels, Biomaterials, 2016.

      12. Dooling, L.J., et al., Programming Molecular Association and Viscoelastic Behavior in Protein Networks, Advanced Materials, 2016.

      13. Lee, W., et al., 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds, Scientific Reports, 2016, 6.

      14. Rosales, A.M., et al., Photoresponsive Elastic Properties of Azobenzene-Containing Poly(ethylene-glycol)-Based Hydrogels, Biomacromolecules, 2015.

      15. Griffin, D. R., et al., Hybrid Photopatterned Enzymatic Reaction (HyPER) for In situ Cell Manipulation, Chembiochem : a European journal of chemical biology 2014, 15(2): 233-242.

      16. Vigen, M., et al., Protease-Sensitive PEG Hydrogels Regulate Vascularization In Vitro and In Vivo. Macromol. Biosci., 2014, 14: 1368–1379.

      17. Kyburz, K.A. et al., Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density. Acta Biomaterialia, 2013, 9(5): p. 6381-6392.

      18、Juliar, B. A., et al., Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels, Biomaterials, 2020, V. 230.

      19、Wang, J., et al., An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides,Journal of Controlled Release, 2021, 330, P. 575-586.

            20、Kumar, M., et al., A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model, Biomaterials, 2021, 121006.

           21、Dargaville, TR, et al., Poly (2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules. 2021, 22(4):1590-9.

           22、Piluso, S, et al., 3D Bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication. 2021.

           23、Cha, J, et al., Cancer Cell-Sticky Hydrogels to Target the Cell Membrane of Invading Glioblastomas. ACS Applied Materials & Interfaces. 2021.

           24、Norman, MD, et l., Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nature Protocols. 2021, 16(5):2418-49.

           25、Griffin, DR, et al., Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nature materials. 2021, 20(4):560-9.

           26.Karam, J., et al., Molecular weight of hyaluronic acid crosslinked into biomaterial scaffolds affects angiogenic potential, Acta Biomaterialia, 2023.

产品询价