欢迎来到北京键凯科技股份有限公司官方网站!

>
>
4arm PEG Thiol (pentaerythritol)
浏览量:
产品名称:

4arm PEG Thiol (pentaerythritol)

产品代号:
4ARM-SH-20K
产品纯度:
≥ 90%
分子量:
5000Da,10000Da, 20000 Da等
产品编号:
A7039
没有此类产品
产品描述

  键凯科技提供高品质4臂PEG硫醇产品,产品取代率>90%。

  键凯科技的4臂巯基可交联制备PEG水凝胶产品。PEG水凝胶在医疗器械和再生医学方面尤其是在药物的缓释控释,2维和3维细胞培养以及伤口的缝合和愈合方面有非常广泛的应用。键凯的4臂PEG原料来源于季戊四醇和环氧乙烷聚合而成,每个PEG链的乙氧基单元数目不是完全相同的。键凯的多臂PEG产品的分子量指的是各臂分子量的总和。

  键凯科技提供4ARM-SH分子量5000Da,10000Da, 20000 Da产品 1克和10克包装。

  键凯科技提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

  键凯科技同时提供其他分子量的4ARM-SH产品,如你需要请与我司sales@jenkem.com联系。

  键凯科技提供大批量生产产品及GMP级别产品,如需报价请与我们联系。

References:

  1. Dos Santos, B.P., et al., Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications, Journal of biotechnology, 2019, 298:35-44.
  2. Atallah, P., et al., Charge-tuning of glycosaminoglycan-based hydrogels to program cytokine sequestration, Faraday Discussions, 2019.
  3. Wang, L., et al., Dual‐Functional Dextran‐PEG Hydrogel as an Antimicrobial Biomedical Material. Macromolecular bioscience, 2018, 18(2), p.1700325.
  4. Hung-Yi Liu, H.-Y., et al., Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma, Biomaterials, 2018, V. 160, P. 24-36.
  5. Lewis, K.J., et al., Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system, Biomaterials, 2018.
  6. Santa Chalarca, C.F., et al., Reactive polymer zwitterions: Sulfonium sulfonates. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(1):83-92.
  7. Greene, T., et al., Comparative study of visible light polymerized gelatin hydrogels for 3D culture of hepatic progenitor cells. Journal of Applied Polymer Science, 2017, 134(11).
  8. Robinson, K.G., et al., Reduced Arterial Elasticity due to Surgical Skeletonization is Ameliorated by Abluminal PEG Hydrogel, Bioengineering & Translational Medicine, 2017.
  9. Wang, X., et al., A Polydopamine Nanoparticle Knotted Poly (ethylene glycol) Hydrogel for On-Demand Drug Delivery and Chemo-Photothermal Therapy, Chemistry of Materials, 2017.
  10. DiVito, K.A., et al., Microfabricated blood vessels undergo neoangiogenesis, Biomaterials, 2017.
  11. Scott, R.A., et al., Aortic adventitial fibroblast sensitivity to mitogen activated protein kinase inhibitors depends on substrate stiffness, Biomaterials, 2017.
  12. Maturavongsadit, P., et al., Influence of Cross-Linkers on the in Vitro Chondrogenesis of Mesenchymal Stem Cells in Hyaluronic Acid Hydrogels, ACS applied materials & interfaces, 2017, 9(4):3318-29.
  13. Zhang, K., et al., Hydrogels with a Memory: Dual-Responsive, Organometallic Poly (ionic liquid) s with Hysteretic Volume-Phase Transition, Journal of the American Chemical Society, 2017.
  14. DiVito, K.A., et al., Data characterizing microfabricated human blood vessels created via hydrodynamic focusing, Data in Brief, 2017, 14, P. 156-162.
  15. Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, 104:1p. 113–123.
  16. McGann, C. L., et al., Thiol-ene Photocrosslinking of Cytocompatible Resilin-Like Polypeptide-PEG Hydrogels. Macromol. Biosci., 2016, 16: 129–138.
  17. Liang, Y., et al., Liposome-crosslinked hybrid hydrogels for glutathione-triggered delivery of multiple cargo molecules, Biomacromolecules, 2016.
  18. Mahadevaiah, S., et al., Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells, Biomaterials, 2015, 62,  P. 24-34.
  19. Greene, T., et al., Modular gelatin hydrogels formed by orthogonal thiol-ene photochemistry for 3D hepatocyte culture, Society for Biomaterials, 2015.
  20. Cambria, E., et al., Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation, Biomacromolecules, 2015, 16 (8), 2316-2326.
  21. Lewis, K. J. R., et al., In vitro model alveoli from photodegradable microsphere templates, Biomater. Sci., 2015, 3, 821-832.
  22. Greene, T., et al., Modular Cross-Linking of Gelatin-Based Thiol–Norbornene Hydrogels for in Vitro 3D Culture of Hepatocellular Carcinoma Cells, ACS Biomaterials Science & Engineering, 2015, 1 (12), 1314-1323.
  23. McGann, C.L., Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications, 2015.
  24. Missirlis, D., et al., Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration, Biomacromolecules, 2014, 15(1), pp 195–205.
  25. Daniele, M.A., et al., Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials, 2014, 35(6): p. 1845-1856.
  26. Sawicki, L.A., et al., Design of thiol–ene photoclick hydrogels using facile techniques for cell culture applications, Biomater. Sci., 2014, 2, 1612-1626.
  27. Liang, Y., et al., Multifunctional lipid-coated polymer nanogels crosslinked by photo-triggered Michael-type addition, Polym. Chem., 2014, 5, 1728-1736.
  28. Kharkar, P.M., et al., Dually degradable click hydrogels for controlled degradation and protein release, J. Mater. Chem. B, 2014, 2, 5511-5521.
  29. Tao, Y., Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material, Acta Biomaterialia, 2013. 9: p. 5022–5030
  30. Qin, H., et al., Gadolinium(III)–gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation, Nanomedicine, 2013, 8(10), 1611–1624.
  31. Tong, X., et al., A new end group structure of poly(ethylene glycol) for hydrolysis-resistant biomaterials. J. Polym. Sci. A Polym. Chem., 2011, 49: 1513–1516.
未找到相应参数组,请于后台属性模板中添加
暂未实现,敬请期待
暂未实现,敬请期待
上一篇
下一篇